그래프 탐색 알고리즘
대표적인 그래프 탐색 알고리즘이 DFS/BFS는 코딩테스트에서 매우 자주 등장하는 유형
스택 자료구조
선입후출의 자료구조
입구와 출구가 동일한 형태(ex : 박스 쌓기)
스택 구현 예제
stack = []
# 삽입(5) - 삽입(2) - 삽입(3) - 삽입(7) - 삭제() - 삽입(1) - 삽입(4) - 삭제()
stack.append(5)
stack.append(2)
stack.append(3)
stack.append(7)
stack.pop()
stack.append(1)
stack.append(4)
stack.pop()
print(stack) # 최하단 원소부터 출력
print(stack[::-1]) # 최상단 원소부터 출력
큐 자료구조
선입 선출의 자료구조
입구와 출구가 모두 뚫린 터널과 같은 형태
큐 구현 예제
from collections import deque
# 큐(Queue) 구현을 위해 deque 라이브러리 사용
queue = deque()
# 삽입(5) - 삽입(2) - 삽입(3) - 삽입(7) - 삭제() - 삽입(1) - 삽입(4) - 삭제()
queue.append(5)
queue.append(2)
queue.append(3)
queue.append(7)
queue.popleft()
queue.append(1)
queue.append(4)
queue.popleft()
print(queue) # 먼저 들어온 순서대로 출력
queue.reverse() # 다음 출력을 위해 역순으로 바꾸기
print(queue) # 나중에 들어온 원소부터 출력
재귀 함수
재귀 함수란 자기 자신을 다시 호출하는 함수를 의미
재귀 함수를 문제 풀이에서 사용 시 종료 조건을 반드시 명시
def recursive_function(i):
# 100번째 호출을 했을 때 종료되도록 종료 조건 명시
if i == 100:
return
print(i, '번째 재귀함수에서', i + 1, '번째 재귀함수를 호출합니다.')
recursive_function(i + 1)
print(i, '번째 재귀함수를 종료합니다.')
recursive_function(1)
팩토리얼 구현 예제
# 반복적으로 구현한 n!
def factorial_iterative(n):
result = 1
# 1부터 n까지의 수를 차례대로 곱하기
for i in range(1, n + 1):
result *= i
return result
# 재귀적으로 구현한 n!
def factorial_recursive(n):
if n <= 1: # n이 1 이하인 경우 1을 반환
return 1
# n! = n * (n - 1)!를 그대로 코드로 작성하기
return n * factorial_recursive(n - 1)
# 각각의 방식으로 구현한 n! 출력(n = 5)
print('반복적으로 구현:', factorial_iterative(5))
print('재귀적으로 구현:', factorial_recursive(5))
최대공약수 계산 (유클리드 호제법) 예제
두 자연수 A,B에 대하여 (A,B) A를 B로 나눈 나머지를 R
이때 A,B의 최대 공약수는 B와 R의 최대공약수와 같다
def gcd(a,b):
if a % b == 0:
return b
else:
return gcd(b, a%b)
print(gcd(192,162))
DFS(Depth-First Search)
DFS는 깊이 우선 탐색이라고 부르며 그래프에서 깊은 부분을 우선적으로 탐색하는 알고리즘
DFS는 스택or 재귀함수를 이용한다
- 탐색 시작 노드를 스택에 삽입하고 방문 처리
- 스택의 최상단 노드에 방문하지 않은 인접 노드가 하나라도 있으면, 그 노드를 스택에 넣고 방문처리, 방문하지 않은 인접노드가 없으면 스택에서 최상단 노드를 꺼냄
- 더 이상 2번의 과정을 수행할 수 없을 때까지 반복
DFS 구현예제
# DFS 함수 정의
def dfs(graph, v, visited):
# 현재 노드를 방문 처리
visited[v] = True
print(v, end=' ')
# 현재 노드와 연결된 다른 노드를 재귀적으로 방문
for i in graph[v]:
if not visited[i]:
dfs(graph, i, visited)
# 각 노드가 연결된 정보를 리스트 자료형으로 표현(2차원 리스트)
graph = [
[],
[2, 3, 8],
[1, 7],
[1, 4, 5],
[3, 5],
[3, 4],
[7],
[2, 6, 8],
[1, 7]
]
# 각 노드가 방문된 정보를 리스트 자료형으로 표현(1차원 리스트)
visited = [False] * 9
# 정의된 DFS 함수 호출
dfs(graph, 1, visited)
BFS(Breadth-First Search)
BFS는 너비 우선 탐색이라고 부르며, 그래프에서 가까운 노드부터 우선적으로 탐색하는 알고리즘
BFS는 큐 자료구조 이용
- 탐색 시작 노드를 큐에 삽입하고 방문처리를 한다.
- 큐에서 노드를 꺼낸 뒤에 해당 노드의 인접 노드 중에서 방문하지 않은 노드를 모두 큐에 삽입하고 방문처리
- 더 이상 2번의 과정을 수행할 수 없을 때까지 반복
BFS 구현예시
from collections import deque
# BFS 함수 정의
def bfs(graph, start, visited):
# 큐(Queue) 구현을 위해 deque 라이브러리 사용
queue = deque([start])
# 현재 노드를 방문 처리
visited[start] = True
# 큐가 빌 때까지 반복
while queue:
# 큐에서 하나의 원소를 뽑아 출력
v = queue.popleft()
print(v, end=' ')
# 해당 원소와 연결된, 아직 방문하지 않은 원소들을 큐에 삽입
for i in graph[v]:
if not visited[i]:
queue.append(i)
visited[i] = True
# 각 노드가 연결된 정보를 리스트 자료형으로 표현(2차원 리스트)
graph = [
[],
[2, 3, 8],
[1, 7],
[1, 4, 5],
[3, 5],
[3, 4],
[7],
[2, 6, 8],
[1, 7]
]
# 각 노드가 방문된 정보를 리스트 자료형으로 표현(1차원 리스트)
visited = [False] * 9
# 정의된 BFS 함수 호출
bfs(graph, 1, visited)
<문제> 음료수 얼려 먹기
아이디어: DFS 또는 BFS로 풀이, 구멍이 뚫린 부분을 그래프 형태로 모델링 하여 풀기
# N, M을 공백을 기준으로 구분하여 입력 받기
n, m = map(int, input().split())
# 2차원 리스트의 맵 정보 입력 받기
graph = []
for i in range(n):
graph.append(list(map(int, input())))
# DFS로 특정한 노드를 방문한 뒤에 연결된 모든 노드들도 방문
def dfs(x, y):
# 주어진 범위를 벗어나는 경우에는 즉시 종료
if x <= -1 or x >= n or y <= -1 or y >= m:
return False
# 현재 노드를 아직 방문하지 않았다면
if graph[x][y] == 0:
# 해당 노드 방문 처리
graph[x][y] = 1
# 상, 하, 좌, 우의 위치들도 모두 재귀적으로 호출
dfs(x - 1, y)
dfs(x, y - 1)
dfs(x + 1, y)
dfs(x, y + 1)
return True
return False
# 모든 노드(위치)에 대하여 음료수 채우기
result = 0
for i in range(n):
for j in range(m):
# 현재 위치에서 DFS 수행
if dfs(i, j) == True:
result += 1
print(result) # 정답 출력
<문제> 미로탈출
아이디어: BFS 사용
from collections import deque
# N, M을 공백을 기준으로 구분하여 입력 받기
n, m = map(int, input().split())
# 2차원 리스트의 맵 정보 입력 받기
graph = []
for i in range(n):
graph.append(list(map(int, input())))
# 이동할 네 가지 방향 정의 (상, 하, 좌, 우)
dx = [-1, 1, 0, 0]
dy = [0, 0, -1, 1]
# BFS 소스코드 구현
def bfs(x, y):
# 큐(Queue) 구현을 위해 deque 라이브러리 사용
queue = deque()
queue.append((x, y))
# 큐가 빌 때까지 반복하기
while queue:
x, y = queue.popleft()
# 현재 위치에서 4가지 방향으로의 위치 확인
for i in range(4):
nx = x + dx[i]
ny = y + dy[i]
# 미로 찾기 공간을 벗어난 경우 무시
if nx < 0 or nx >= n or ny < 0 or ny >= m:
continue
# 벽인 경우 무시
if graph[nx][ny] == 0:
continue
# 해당 노드를 처음 방문하는 경우에만 최단 거리 기록
if graph[nx][ny] == 1:
graph[nx][ny] = graph[x][y] + 1
queue.append((nx, ny))
# 가장 오른쪽 아래까지의 최단 거리 반환
return graph[n - 1][m - 1]
# BFS를 수행한 결과 출력
print(bfs(0, 0))
Uploaded by Notion2Tistory v1.1.0